CONNECTICUT ARML QUALIFICATION TEST, 2025 Solutions

1. There are 10 delegates at a conference: 6 from Party A and 4 from Party B. A committee of 6 delegates is to be formed such that, on the committee, the number of delegates from Party A is greater than the number of delegates from Party B. In how many ways can this be done? [Answer: 115]

Solution:

Number of ways to choose 4 from Party A and 2 from Party B: $\binom{6}{4}\binom{4}{2} = 15 \cdot 6 = 90$. Number of ways to choose 5 from Party A and 1 from Party B: $\binom{6}{5}\binom{4}{1} = 6 \cdot 4 = 24$. Number of ways to choose 6 from Party A and 0 from Party B: 1. Total: 90 + 24 + 1 = 115.

2. Find the largest positive integer n such that 30! is divisible by 2^n . [Answer: 26]

Solution:

$$n = \left\lfloor \frac{30}{2} \right\rfloor + \left\lfloor \frac{30}{2^2} \right\rfloor + \left\lfloor \frac{30}{2^3} \right\rfloor + \left\lfloor \frac{30}{2^4} \right\rfloor + 0$$
$$= 15 + 7 + 3 + 1$$
$$= 26$$

3. Let α , β , and γ be the solutions of the equation $2x^3 + 3x^2 - 5x - 4 = 0$. Then $\alpha^2 + \beta^2 + \gamma^2 = \frac{m}{n}$, where *m* and *n* are relatively prime positive integers. Find m + n. [Answer: 33]

Solution:

$$\overline{\alpha^2 + \beta^2 + \gamma^2} = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma) = \left(-\frac{3}{2}\right)^2 + 2 \cdot \left(\frac{5}{2}\right) = \frac{29}{4}.$$

29 + 4 = 33.

4. Four circles of radius 4 are internally tangent to a circle of radius *r*, with each of the smaller circles externally tangent to two others. Then $r = a + b\sqrt{c}$, where *a*, *b*, and *c* are positive integers and *c* is not divisible by the square of any prime number. Find a + b + c. [Answer: 10]

Solution. The centers of the 4 smaller circles form a rhombus, and for there to exist a larger circle that is externally tangent to all four, this rhombus has to be a square, by symmetry. Then, referring to the figure 1, $OC_2 = 4\sqrt{2}$ and

 $r = 4 + OC_2$ = 4 + 4\sqrt{2} Ans = 4 + 4 + 2 = 10

Figure 1: Figure for Q4

5. Find the number of values of x with $0 < x < 2\pi$ such that

$$(4^{\cos 2x})^{\sin 2x} = 2$$

[Answer: 4]

Solution:

 $(4^{\cos 2x})^{\sin 2x} = 2 \Rightarrow 4^{\sin 2x \cos 2x} = 2 \Rightarrow \sin 2x \cos 2x = \frac{1}{2} \Rightarrow 2 \sin 2x \cos 2x = 1$ $\Rightarrow \sin 4x = 1 \Rightarrow 4x = \frac{\pi}{2} + 2k\pi \Rightarrow x = \frac{\pi}{8} + \frac{k\pi}{2} \Rightarrow 0 \le \frac{1}{8} + \frac{k}{2} \le 2 \Rightarrow 0 \le k \le 3.$ There are 4 values of x.

6. Let *A*, *B*, *C*, and *D* be positive integers (not necessarily distinct) such that $A^2 + B^2 = 20$ and $C^2 - D^2 = 24$. Find the greatest possible value for the sum A + B + C + D. [Answer: 18]

Solution. Optimize A + B and C + D separately.

$$(A+B)^2 = 2(A+B)^2 - (A-B)^2$$

= 40 - (A - B)^2

Since both $(A+B)^2$ and $(A-B)^2$ are perfect squares and (A+B) and (A-B) have the same parity, the minimum possible value of $(A-B)^2$ is 4, and the corresponding max value of A+B is 6. Similarly, (C+D)(C-D) = 24 where C+D and C-Dare positive integers of the same parity. So the max possible value of C+D is 12.

Therefore the answer is 6 + 12 = 18

Let f be a function with the property that, for any real x, $xf(x) + f(x+2) = x^2$. Find f(8). 7. [Answer: 36]

Solution: $x = 0 \Rightarrow f(2) = 0$ $x = 2 \Rightarrow f(4) = 4$ $x = 4 \Rightarrow f(6) = 0$ $x = 6 \Rightarrow f(8) = 36$

In the complex plane, let z and w be numbers satisfying $z^6 = 1$ and $w^4 = -1$. Given that 8. 0, z, w, and z + w form a quadrilateral with nonzero area, the minimum possible area of the quadrilateral can be expressed as $\frac{\sqrt{a}-\sqrt{b}}{c}$, where *a*, *b*, and *c* are positive integers, and neither *a* nor b is divisible by the square of any prime number. Find a + b + c. [Answer: 12]

Solution. z and w satisfy, $w = \pm \frac{1}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}$ and $z = +1, -1, \text{or}, \pm \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$, which also satisfy |z| = |w| = 1. If θ is the angle between z and w, the area of the quadrilateral is $\sin \theta$.

The angles that z and w form with the positive x-axis are respectively $0^{\circ}, \pm 60^{\circ}$, $\pm 120^{\circ}$ and 180° (for z) and $\pm 45^{\circ}$ and $\pm 135^{\circ}$ (for w). The minimum angle between these two sequences is 15° which also corresponds to the minimum area of $\sin 15^{\circ}$.

To compute the actual value, we write $s = \sin 15^\circ$, and note that

$$\frac{\sqrt{3}}{2} = \cos 30^{\circ}$$

= 1-2s², Using the doubling formula for cosine and noting the definition of s

Solving this equation, we get $s = \frac{\sqrt{2-\sqrt{3}}}{2}$. To simplify this expression, we set $a = \sqrt{2 - \sqrt{3}}$ and $b = \sqrt{2 + \sqrt{3}}$, which satisfy ab = 1 and $a^2 + b^2 = 4$. Leading to $b + a = \sqrt{6}$ and $b - a = \sqrt{2}$, and finally to $a = \frac{\sqrt{6} - \sqrt{2}}{2}$. Substituting in the expression for s, we get $s = \frac{\sqrt{6}-\sqrt{2}}{4}$.

Finally, the answer is 6+2+4=12

9. Point *D* lies inside triangle *ABC* so that AD = 8, BD = 5, and $m \angle ADC = m \angle ADB = m \angle CDB = 120^\circ$. Given that $\angle ABC$ is a right angle, find the length *CD*. [Answer: 30]

Solution: <u>Method 1</u>: Use cosine rule. $AB^2 = 5^2 + 8^2 + 5 \cdot 8, \quad BC^2 = 5^2 + x^2 + 5x, \quad AC^2 = 8^2 + x^2 + 8x.$ $AB^2 + BC^2 = AC^2 \Rightarrow 3x = 90 \Rightarrow x = 30.$ <u>Method 2</u>: Set $D = (0,0), B = (0,5), A = (-4\sqrt{3}, -4), C = (\frac{\sqrt{3}}{2}x, -\frac{1}{2}x).$ Line *AB* has slope $\frac{3\sqrt{3}}{4}$. Then line *BC* has slope $-\frac{4\sqrt{3}}{9}$. Calculating this slope using coordinates for *B*, *C* gives: $\frac{-\frac{1}{2}x - 5}{\frac{\sqrt{3}}{2}x} = -\frac{4\sqrt{3}}{9} \Rightarrow x = \frac{30}{2}.$

10. Let *n* be a positive integer. When *n* dice are rolled, the nonzero probability of obtaining a sum of 2025 is the same as the probability of obtaining a sum of *S*. As the number *n* varies, what is the smallest possible value of *S*? [Answer: 341]

Solution. Since P(2025) > 0, we have $338 \le n \le 2025$. The event of getting a sum of k in n throws is bijectively mapped to the event of getting a sum of 7n - k, by mapping $1 \leftrightarrow 6, 2 \leftrightarrow 5, 3 \leftrightarrow 4$. So, $P_n(k) \le P_n(7n - k)$, and since the mapping is self-inverse, we also get $P_n(7n - k) \le P_n(k)$, and hence $P_n(7n - k) = P_n(k)$. Therefore min S = 7n - 2025 for the minimum value of n. Thus the result is $7 \times 338 - 2025 = 341$.

11. What is the only real number x > 1 that satisfies the equation below?

 $(\log_3 x)(\log_5 x)(\log_7 x) = (\log_3 x)(\log_5 x) + (\log_5 x)(\log_7 x) + (\log_3 x)(\log_7 x)$

[Answer: 105]

Solution: $\log_3 x \log_5 x \log_7 x = \log_3 x \log_5 x + \log_5 x \log_7 x + \log_3 x \log_7 x$, Divide by $\log_3 x$, get: $\log_5 x \log_7 x = \log_5 x + \log_5 3 \log_7 x + \log_7 x$, Divide by $\log_5 x$, get: $\log_7 x = 1 + \log_7 5 + \log_5 3 \log_7 5$, $\Rightarrow x = 7^{1+\log_7 5 + \log_5 3 \log_7 5} = 7 \cdot 5 \cdot 3 = 105$. 12. In the corners of a square *PQRS* with side length 6, four smaller squares are placed with side lengths 2, as shown in the diagram below. We will label the points *W*, *X*, *Y* and *Z* as shown in the diagram. A square *ABCD* is constructed in such a way that the points *W*, *X*, *Y*, and *Z* lie on sides \overline{AB} , \overline{BC} , \overline{CD} , and \overline{DA} , respectively. Find the maximum possible value of $(PD)^2$.

[Answer: 36]

Solution. The locus of D is the semi-circle with ZY as the diameter. The max PD^2 corresponds to the max PD, which occurs when D is the point on the semi-circle collinear with P and the center of the semi-circle, where the center of the circle is the midpoint of the segment ZY. Hence,

$$\max PD = \sqrt{3^2 + 4^2} + \text{radius}$$
$$= 5 + 1$$
$$= 6$$

Hence, the answer is $6^2 = 36$

13. Given that x and y are real numbers and $x^2 + y^2 = 14x + 6y + 6$, what is the largest possible value of 3x + 4y? [Answer: 73]

Solution:

<u>Method 1</u>: Use analytical geometry.

The equation can be written as: $(x - 7)^2 + (y - 3)^2 = 64$, which is a circle of radius 8 centered at C = (7,3).

The objective function to be maximized, 3x + 4y = a, can be written as $y = -\frac{3}{4}x + \frac{a}{4}$, which is a straight line. The value of *a* is maximized when this line is tangent to the circle at a point *P*. Note that the slope of *CP* is $\frac{4}{3}$, which gives the coordinates of $P = \left(7 + \frac{24}{5}, 3 + \frac{32}{5}\right)$ with the radius being 8. Therefore the *y*-intercept of the line is given by:

$$\frac{a}{4} - \left(3 + \frac{32}{5}\right) = \frac{3}{4}\left(7 + \frac{24}{5}\right) \Rightarrow a = 73.$$

Method 2: Use quadratic equation discriminant.

From 3x + 4y = a, we get $y = \frac{a}{4} - \frac{3}{4}x$. Substituting into $x^2 + y^2 = 14x + 6y + 6$ and simplifying, we get:

 $25x^2 - (6a + 152)x + (a^2 - 24a - 96) = 0.$

At the maximum, this equation's discriminant is 0, which gives an equation for a, after simplification: $a^2 - 66a - 511 = 0$, or (a + 7)(a - 73) = 0, $\Rightarrow a = 73$.

In the diagram below, AB = 4, BD = 3, AD = 5, $m \angle DBC = 30^{\circ}$, and \overline{ADC} is a straight line. 14. $DC = \frac{a\sqrt{b}+c}{d}$, where a, b, c, and d are positive integers, b is not divisible by the square of any prime number, and gcd(a, c, d) = 1. Find a + b + c + d.

Solution. Let CD = x. The slope of the line CD is (ignoring sign) $\frac{4}{3}$, and corresponding cosine and sine are $\frac{3}{5}$ and $\frac{4}{5}$. Writing the slope of BC $(\tan 30^\circ = \sqrt{3})$, we get

$$3 + \frac{3}{5}x = \sqrt{3}\frac{4}{5}x$$

Solving, we get $x = \frac{15}{4\sqrt{3}-3} = \frac{15(4\sqrt{3}+3)}{48-9} = \frac{5(4\sqrt{3}+3)}{13} = \frac{20\sqrt{3}+15)}{13}$. Or, the answer is 20 + 15 + 13 + 3 = 51

How many nonempty subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} have the property that no two 15. elements of the subset differ by more than 5? For example, count the subsets {3}, {2, 5, 7} and $\{5, 6, 7, 8, 9\}$, but not the subset $\{1, 3, 5, 7\}$. [Answer: 255]

Solution:

If the subset has 1 element, there are 12 possibilities.

For subsets S that have at least 2 elements, they can be grouped into disjoint cases based on D = $\max(S) - \min(S)$, with D ranging from 1 to 5. For each D, there can be 12 - D possibilities to chose min(S) and max(S) together, and 2^{D-1} possibilities for each element strictly between $\min(S)$ and $\max(S)$ to be included or not.

 $12 + 7 \cdot 2^4 + 8 \cdot 2^3 + 9 \cdot 2^2 + 10 \cdot 2^1 + 11 \cdot 2^0 = 12 + 112 + 64 + 36 + 20 + 11 = 255.$

16. Suppose that $2 \tan^{-1}(x) + \tan^{-1}(2x) = \frac{\pi}{2}$. Then $x^2 = \frac{m}{n}$, where *m* and *n* are relatively prime positive integers. Find m + n. [Answer: 6]

Solution. Taking tangent of both sides, $\tan(2\tan^{-1}x) = \frac{1}{2x}$, or,

$$\frac{2x}{1-x^2} = \frac{1}{2x}$$

Or, $x^2 = \frac{1}{5}$ Answer = <u>6</u>

17. The base-2 representation of the number N is

1011010101010101<u>A</u><u>B</u><u>C</u>110

where each of the digits A, B, C is a 0 or a 1. If N is divisible by 7, what are the last seven digits of the base-2 representation of N? (The answer is a seven-digit number consisting of 1s and 0s, only.) [Answer: 1010110]

Solution:

Since $8 \equiv 1 \mod 7$, if N = 8M + L then $N \mod 7 \equiv (M + L) \mod 7$.

Applying this relationship recursively, $N \mod 7$ can be calculated by adding up each group of 3 digits of the number together, mod 7. Since *ABC* is the second such 3-digit group, we can calculate the sum of the other groups first:

 $110_2 + 101_2 + 010_2 + 101_2 + 110_2 + 010_2 \equiv (100_2 \equiv (010_2 \pm 010_2) \equiv 100_2 \mod 7.$ Therefore *ABC* = 010₂ is the only choice to make $N \equiv 0 \mod 7.$ The last 7 digits of *N* is 1010110. 18. In triangle *ABC*, AB = AC and we let ω be the unique circle inscribed in the triangle. Suppose that the orthocenter of triangle *ABC* lies on ω . Then $\cos \angle BAC = \frac{m}{n}$, where *m* and *n* are relatively prime positive integers. Find m + n. [Answer: 10]

Solution. From the condition, $\tan \angle HBD = 2 \tan \angle IBD.$ Since quadrilateral B'ABD is cyclic, $\angle HBD = \frac{1}{2}\angle BAC.$ Also, $\angle IBD = \frac{1}{2}\angle ABC = 45^{\circ} - \frac{1}{4}\angle BAC.$ Using the condition on tangents, $\tan \frac{A}{2} = 2 \tan(45^{\circ} - \frac{A}{4}).$ Let $t = \tan \frac{A}{4}$, then $\frac{2t}{1-t^2} = \frac{2(1-t)}{1+t}.$ Or, $t^2 - 3t + 1 = 0$, where we know that 0 < t < 1. Solving and using this inequality, we get $t = \frac{3-\sqrt{5}}{2}.$

Figure 4: Figure for Q18

19. In the sequence $a_1, a_2, a_3, ..., let a_k = (k^2 + 1)k!$ and $b_k = a_1 + a_2 + \dots + a_k$. Then

$$\frac{a_{100}}{b_{100}} = \frac{m}{n}$$

where *m* and *n* are relatively prime positive integers. Find n - m. [Answer: 99]

Solution:

We calculate the first few terms of a_k for heuristics: $a_1 = 2 \cdot 1!,$ $a_2 = 5 \cdot 2!,$ $a_3 = 10 \cdot 3!,$ $a_4 = 17 \cdot 4!.$ Note that: $b_2 = a_1 + a_2 = 6 \cdot 2! = 2 \cdot 3!,$ $b_3 = b_2 + a_3 = 2 \cdot 3! + 10 \cdot 3! = 12 \cdot 3! = 3 \cdot 4!,$ $b_4 = b_3 + a_4 = 3 \cdot 4! + 17 \cdot 4! = 20 \cdot 4! = 4 \cdot 5!.$ We can therefore stipulate that $b_k = k(k + 1)!$ and prove it by induction: $b_k + a_{k+1} = k(k + 1)! + ((k + 1)^2 + 1)(k + 1)! = [(k + 1)^2 + (k + 1)](k + 1)!$ $= (k + 1)(k + 2)! = b_{k+1}.$ Therefore: $\frac{a_{100}}{b_{100}} = \frac{10001 \cdot 100!}{100 \cdot 101!} = \frac{10001}{10100'},$ 10100 - 10001 = 99. 20. Five people take turns rolling a fair six-sided die numbered from 1 to 6, with each person rolling exactly once. The probability that each person's roll is greater than or equal to the previous person's roll is $\frac{p}{q}$, where *p* and *q* are relatively prime positive integers. Find p + q. [Answer: 223]

Solution. $P = \frac{\text{number of non-decreasing roll sequences}}{6^5}$

There are $\binom{10}{5}$ possibilities for the numerator. Hence

$$P = \frac{\binom{10}{5}}{216} = \frac{7}{216}$$

Answer: 7 + 216 = 223.

You can also obtain the numerator using dynamic programming on a square grid 5 columns and 6 rows and starting from the top right.

21. We will call an *n*-digit number *sweet* if its *n* digits are an arrangement of the set {1, 2, ..., *n*} and, for k = 1, 2, ... n, its first k digits form an integer that is divisible by k. For example, 321 is a sweet 3-digit integer because 1 divides 3, 2 divides 32 and 3 divides 321. How many sweet 6-digit numbers are there?
[Answer: 2]

Solution:

Let the number be *abcdef*. 2 | $ab \Rightarrow b \in \{2,4,6\}$, 3 | $abc \Rightarrow 3 | (a + b + c)$, 4 | $abcd \Rightarrow 4 | cd \Rightarrow d \in \{2,4,6\}$, 5 | $abcde \Rightarrow e = 5$, 6 | $abcdef \Rightarrow f \in \{2,4,6\}$. Since $\{b, d, f\} = \{2,4,6\}$, we must have $\{a, c\} = \{1,3\}$. Then $3 | abc \Rightarrow b = 2$. Then $4 | cd \Rightarrow d = 6$. Therefore, 123654 and 321654 are the only 2 possibilities. 22. A farmer has 5 cows, 4 pigs, and 7 horses. The farmer will sort the animals into pairs in such a way that no animal is paired with an animal of the same species. Assuming that all the animals are distinguishable, in how many ways can this be done? [Answer: 100800]

Solution. There are 16 animals, hence 8 pairs. The horses pair up with either a pig or a cow. Remaining 1 cow and 1 pig pair up. There are $5 \times 4 = 20$ ways to do this last pairing. Once this is set, the rest are equivalent to a permutation of the horses (since each animal is distinguishable) hence contribute 7! ways. Answer $= 20 \times 7! = 100800$

23. The value of x that minimizes $\sqrt{x^2 + 49} + \sqrt{(8 - x)^2 + 25}$ is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n. [Answer: 17]

Solution:

In the above, let: AB = 8, AE = FD = 5, CE = 7, AF = ED = x. Then: $\sqrt{x^2 + 49} = CD$, $\sqrt{(8 - x)^2 + 25} = BD$. Their sum is minimized when *BDC* is a straight line. We have then: $\frac{ED}{CE} = \frac{AB}{AC} \Rightarrow \frac{x}{7} = \frac{8}{5+7} \Rightarrow x = \frac{14}{3}$. 14 + 3 = 17. 24. The longer of the two side lengths of rectangle AXCY is 11, and rectangle AXCY shares diagonal \overline{AC} with square ABCD. Assume that B and X lie on the same side of \overline{AC} such that triangle BXC and square ABCD are non-overlapping. The maximum area of triangle BXC across all such configurations is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n. [Answer: 137]

Solution. Let r be the radius of the circle of which \overline{AC} is the diagonal. Then, $2r = \sqrt{11^2 + t^2}$. Therefore $a = \sqrt{2}r = \frac{\sqrt{11^2 + t^2}}{\sqrt{2}}$ Area $(BXC) = A = \frac{ah}{2} = \frac{h\sqrt{11^2 + t^2}}{2\sqrt{2}}$ Or, $A = \frac{t\sin\theta\sqrt{11^2 + t^2}}{2\sqrt{2}}$ But, $\theta = 45^\circ - \theta$ So $\sin\theta = \frac{1}{\sqrt{2}}(\cos\alpha - \sin\alpha)$ Also, $\cos\alpha = \frac{11}{\sqrt{11^2 + t^2}}$ Substituting all in the formula for area $A = \frac{t(11-t)}{4}$, so the maximum value is attained at $t = \frac{11}{2}$ $A_{max} = \frac{1}{4}(\frac{11}{2})^2 = \frac{121}{16}$ Answer = 121 + 16 = 137

Figure 5: Figure for Q24

25. For any positive integer *n*, let s(n) denote the sum of the digits of *n*. Find the largest positive integer *n* such that $n = (s(n))^2 + 2s(n) - 2$. [Answer: 397]

Solution:

Let $n = \sum_{k\geq 0} a_k 10^k$, $a_k \in \{0, \dots, 9\}$. Then $s(n) = \sum_k a_k$. If n has m digits, then $s(n) \leq 9m$, which gives $s(n)^2 + 2s(n) - 2 \leq 81m^2 + 18m - 2$, while $n \geq 10^{m-1}$. When $m \geq 5$, it's clear there can be no solution. If m = 4, $s(n)^2 + 2s(n) - 2 \leq 81m^2 + 18m - 2 = 1366$, but when $n \leq 1366$, $s(n) \leq 22$, then $s(n)^2 + 2s(n) - 2 \leq 526$ forcing n to have fewer than 4 digits. We try m = 3 next, $s(n)^2 + 2s(n) - 2 \leq 81m^2 + 18m - 2 = 781$, with $n \leq 781$, $s(n) \leq 24$, then $s(n)^2 + 2s(n) - 2 \leq 622$, with $n \leq 622$, $s(n) \leq 23$. We can proceed with s(n) = 23 downwards, at each step calculating $s(n)^2 + 2s(n) - 2$ and to check that if we set $n = s(n)^2 + 2s(n) - 2$, its digits indeed sum up to s(n). The first such occurrence is s(n) = 19, with n = 397.